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Stochastic synchronization via noise recycling
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The nonequilibrium escape dynamics in a bistable system under the influence of two Gaussian noises, one
obtained by recycling, the other with a constant delay time, is shown by numerical simulation to exhibit
stochastic synchronization; i.e., under stationary conditions, an appreciable fraction of renewal trajectories gets

locked to the noise-recycling delay time. The conditions for optimal synchronization, reminiscent of stochastic
resonance, are interpreted at any order within the framework of Kramers’ theory.
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I. INTRODUCTION

Control or spurious signals, either periodic or noisy, while
being transmitted across an extended system, may undergo
time delays, due to diverse propagation mechanisms [1,2]. A
good example is provided by the gravitational-wave interfer-
ometers, like the VIRGO detector [3]. Here, an external sig-
nal &(f)—e.g., a seismic disturbance—enters the antenna by
creeping through its mechanical suspensions and eventually
combines with the intrinsic noises in the apparatus, so that
the detection signal x(z), corresponding to the mirror dis-
placement induced by the gravitational signal, is additively
and multiplicatively affected by &(¢) at different times.

Noise delay can impact a variety of nonlinear phenomena,
like the propagation of charge density waves [4], the migra-
tion of defects in crystalline materials [5], the transport of
nanoparticles in biological [6] and artificial channels [7], the
manipulation of vortex lines in superconducting devices [8],
and colloidal particles along one-dimensional (1D) tracks
[9]. However, its role has not been fully recognized yet, be-
cause in the current literature the multiple action of one noise
source is often modeled by means of two or more uncorre-
lated noise terms. Delay effects have been studied in some
detail only for the more controllable case of periodic input
signals: A given phase lag between two additive signals [10]
or between an additive and a multiplicative signal [11,12]
may breach the spatial symmetry of the underlying x dynam-
ics, thus inducing net currents [ 13] or asymmetric probability
densities [14].

In this report we focus on the archetypal noise-activated
process [15]

i=ax—bx>+ (1), (1)
with modified stationary noise

L) = &) + et — 7). ()

The stochastic variable x(r) represents an overdamped
Brownian particle confined to the double-well potential
V(x)=—ax?/2+bx*/4; it overcomes the activation barrier
AV=ﬂ4b separating the two symmetric minima at x.
==+\a/b thanks to the fluctuation source (2). Here, £(f) can
be regarded as resulting from the linear superposition of a
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primary source &(¢) and a recycling term €&(7— 7,), obtained
by reinjecting a fraction || of &(7) after a processing time 7.
Noise recycling should not be mistaken for a delay feedback,
a mechanism also used to control activation processes [16].

The outline of this paper is as follows. In Sec. II the
output of extensive numerical simulations is presented to il-
lustrate how recycling delay affects the distributions of the
particle escape times (to switch well) and of the renewal
times (to escape and reenter the same well). Delay clocks
renew events with duration 7, thus inducing an efficient
mechanism of stochastic synchronization. Synchronization
can occur at different orders, as the trajectories locked to the
noise recycling procedure (2) can comprise multiple renewal
cycles of different duration. In Sec. III the conditions for
optimal synchronization at any order are analyzed within the
framework of Kramers’ activation rate theory. Practical ap-
plications of stochastic synchronization by noise recycling
are briefly discussed in Sec. IV.

II. SIMULATION RESULTS

We characterized the noise-activated dynamics (1) and (2)
by recording ordered sequences of the residence times
t,((R),t,((I‘),tg)1 ,t](f;)l ,.... After having crossed the negative
threshold —x,;,, the particle takes a time t](CR) to cross x,, and an
additional time t,(f) to recross —xy, and so on, the index k
counting the number of renewal, or recovery, cycles. The
times t,((R) and t,((L) are two consecutive readings of the escape
times Ty ;, respectively, to the right and to the left; the sum
E?:l(’/g),-"‘f/(i)[) is the reading of the renewal time T(r”) after n
cycles. Due to the x— —x symmetry of V(x), the mean escape
times from one well into the other obey the identities
(Tpp)= Te=<T<r1)>/2. Moreover, for D<AV and x,,=|x.|, we

can ignore the x,, dependence of the observables Tx; and
.

' Without loss of generality we restrict our analysis to a
linear combination (2) of zero-mean, Gaussian white noises
with 0<|¢<1, 7,=0, and intensity D—i.e., (&(t)&0))
=2D&(1) and  {Z()Z(0))=2D[(1+€) 8(t)+ €St 1,) + (¢
+7,)]. Note that x(r) defines an equilibrium process only for
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FIG. 1. (Color online) Statistics of the escape times of the process (1) and (2). Panels (a), (c) 3D plots of N(Tk,T;) for (a) e=1 and (c)
e=—1; panels (b), (d) the corresponding contour plots for (b) e=1 and (d) e=—1. Other simulation parameters: a=b=1, AV/D=3, x;,=1, and

Td=30'

7,=0,%, when {(f) has intensity Dy=2D(1+¢)?> and D,
=D(1+¢€), respectively.

The probability densities of the residence time pairs
,(CR), ,(CL), N(Tg,T,), are displayed in Fig. 1 for e=1 [panels (a)
and (b)] and e=—1 [panels (c) and (d)]. For 7,>0, both the
3D [panels (a) and (c)] and the contour plots [panels (b) and
(d)] exhibit a richer landscape than in the equilibrium case
[15]. A sharp structure crosses the plane (Tk,T;) along the
diagonal

T =T+ Ty =1, 3)
forming a ridge (rift) depending on the sign of €. This is the
most prominent signature of stochastic synchronization in-
duced by noise recycling (2) with €>0 (e<<0). Also notice-
able is the marked depression (peak) centered at the intersec-
tion of the secondary valleys (ridges) along the vertical and
horizontal lines T, p=7,, respectively. Finer structures at
higher 7, are hardly detectable with the present statistical
accuracy.

To resolve more details, in Figs. 2(a) and 2(b) we plot the
corresponding probability densities of the escape times Ty
and Ng;(7) and the renewal times T( and N, (1) (T), respec-
tively, for e=+1. These curves can be obtalned by suitably

integrating the relevant N(Ty,T;) plots with e=1 (e=—1). In
correspondence with the main ridge (rift) of N(Tg,T,), the
curves Ng;(T) develop an initial branch that appears to de-
cay faster (slower) than their tail [17]; the perpendicular val-
leys (ridges) of N(Tg,T;) with Ty =7, are reflected by the
Ng, dips (peaks) at 7, The pronounced synchronization
peak (dip) of the curves N( (7) at 7, coincides, instead, right
with the diagonal structure of N(Ty,T,). Moreover, all peaks
in Nﬁl)(T) are mirrored by dips in Ng;(7) and vice versa, no
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FIG. 2. (Color online) Statistics of the escape and the renewal
times of the process (1) and (2): probability densities Ng; (blue
solid curve) and N( (shaded) corresponding to the plots of Fig. 1.
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matter what the sign of e. Finally, we notice that the small
dip [peak] of N(rl)(T) [Ng1(T)] at 27, is independent of the €
sign.

A simple interpretation of the synchronization phenom-
enon illustrated in Fig. 1 can be formulated more effectively
in terms of renewal times than of escape times [18]. Let the
Brownian particle execute two switches—say, left to right
and back—within the time interval 7;; the probability that it
can retrace the same (or a close) trajectory over a subsequent
time interval of the same length depends on the sign and the
intensity €D of the recycled /() component; that is, the
renewal events are not statistically independent [21]. For €
=1 repeated renewal trajectories of duration 7, are favored,
as long as the individual escape times obey the synchroniza-
tion condition (3). For e=—1 the sign of the recycled noise
sequence acting on the particle after a renewal cycle of du-
ration 7, is opposite to the sign of the primary noise during
the renewal cycle just completed; the particle is thus pre-
vented from retracing the same escape path and recovery
after 7, gets unlikely. In other words, noise recycling (2)
causes a spontaneous symmetry breaking of the dynamics
(1.

The argument above explains, for instance, the existence
of the diagonal ridge (3) of N(Tk,T;) for e=1 [Figs. 1(a) and
1(b)] and of the corresponding peak of Nil)(T) at 7, [Fig.
2(a)]. By the same token we also understand why in Fig. 2
the curve Ny ;(7) develops a dip in coincidence with a peak
of N(rl)(T) and vice versa. Suppose that under the action of a
primary noise sequence of duration 7, the particle has simply
switched well; as the same &(f) sequence is now recycled and
fed into the system, the particle finds itself in a well with
opposite symmetry with respect to the initial one: For e>0 it
is unlikely that it can follow its path backwards (hence the
Ngp dip), whereas dynamically equivalent initial conditions
are restored by changing the sign of € (i.e., Ny peaks at 7,
for €<0). All remaining distribution peaks and dips shown
in Figs. 1 and 3 are actually explained by this simple argu-
ment.

Our renewal time analysis is further corroborated by Fig.
3, where only the case e=1 is shown. In panel (a), N(r])(T) is
plotted for increasing 7, While peaks and dips (the latter
ones not always discernible) have been already identified as
synchronization effects, the broad N<r D backgrounds represent
the dominant fraction of independent renewal events. Such
backgrounds are well fitted (not shown) by the Erlang func-
tions (7/T2)e~"""e, where T, depends on 7,. According to the
renewal theory [21], this fitting law becomes exact for 7,
=0 and o, where T, coincides with the Kramers’ rates [18]
T,(4D) and T,(2D), respectively (dashed curves). The syn-
chronization peak amplitude, a resonant function of 7,
reaches its maximum as the peak moves past the tip of the

. 1) ] L L
underlying N(r background; no synchronization peak is vis-
ible for at;=<3 [Fig. 3(a), inset].

The probability densities of T(r") displayed in Fig. 3(b) for
€=1, exhibit n peaks of decreasing amplitude at T<r")=m7'd,
with m=1,2,...,n (a few hardly detectable as they merge in
the background). This means that feeding a recycled noise
sequence of duration 7, with €>0 into the system favors
trajectories executing any integer number n of full recovery
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FIG. 3. (Color online) Ng")(T) for e=1 and different 7;: (a)
dependence of the N(r D synchronization peak on 7, and (b) synchro-
nization peaks for n> 1. Vertical arrows indicate the renewal times
mt,; with 1<m=<n (see text). Other simulation parameters: a=b
=1, AV/D=3, and x,=1.

cycles in the time 7,; Furthermore, we checked that only
Nﬁl)(T) develops a discernible dip at 27, high-m peaks can
be made more visible by tuning D or 7, (see inset); the width
of the Nﬁn) peaks is insensitive to n and m; the Ng") back-
ground, instead, broadens with increasing n, being well re-
produced by the Erlang function (7%"~'/T%")e~"'e,

The first peak of Nf”)(T) with m=1, is the most promi-
nent; the single renewal cycles contributing to the primary
N5"> peak may still have different duration, so that no D
peak at 7,/n is to be seen. The secondary peaks with m>1
are also revealing: as Nil)(T) peaks at T(rl)=7'd, the last peak
of N(r”)(T), m=n, measures the frequency of the sequences of
n consecutive renewal cycles, each of duration 7;; the second
to last peak m=n—1 accounts for all consecutive combina-
tions of n—1 renewal cycles of duration 7, plus one double
renewal cycle of duration T<r2)= 7, [see first peak of Niz)(T)],
and so on, counting all possible combinations. Clearly, the
higher m, the more conditional are the synchronized renewal
trajectories of a given order n and the weaker their signature.

II1. DISCUSSION

A quantitative analysis of the synchronization mechanism
is sketched in Fig. 4, where the mean escape time 7, and the
peak strength P, of Nfl)(T) are plotted versus 7, for e==+1.
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FIG. 4. (Color online) Resonance mechanisms for e=+1: (a) T,
vs 7, Short and long 7, approximations (see text) are represented
by dotted and dashed curves, respectively. The intersection of each
data set with the solid line 7,= 7, defines the optimal synchroniza-
tion condition in (b). (b) Peak strength of Nil)(T), Py, vs 74

P, is defined here as the area enclosed by the N(r D peak or dip
at 7, taken with respect to the background of the uncorre-
lated renewal events. Two distinct resonant mechanisms,
both induced by noise recycling, become apparent: T,(7,) in
Fig. 4(a) reaches a maximum (e=1) or a minimum (e=-1)
for ar,=; P, in Fig. 4(b) peaks for T;P)Z T,(2D), regard-
less of the e sign. The resonant behavior of T,(7,;) is con-
trolled by the intrawell relaxation in the presence of noise
recycling [19], whereas optimal synchronization—i.e., the P,
maximum—results from the matching of delay and activa-
tion time scales.

For short delay times a7,;<<1, stationarity is set inside
either potential well way before the escape process gets ac-
tivated; 7,(7,;) can be then written as an equilibrium Kram-
er’ time [1] T,(7)=Qn/ w.0y)[1+(3/8)(D,/AV)
++--1e2VPr where w2=V"(x,)=2a, w3=|V"(0)|=a, and D is
an ad hoc function of 7, For D<AV, the Brownian dynam-
ics (1) and (2) inside a single well can be linearized as [13]

¥= = wl(x ¥ x) +{(0). 4)

This is a Gaussian process with steady-state variance o>
=D,/ w? and D (7,)=D[(1 +ez)+26e“"ifd]. The correspond-
ing Kramers-like expressions for T,(7,), plotted in Fig. 4(a)
(dotted curves), bridge monotonically the exact equilibrium
values T,(0)=Ty(Dy) and T,(>)=T,(D,) on the intrawell
time scale 27/ ws.

For long delay times 7,=T,(7,), noise recycling modu-
lates in time the interwell dynamics; indeed, synchronization
peaks were observed only for a7,>  [Fig. 3(a), inset]. The
interwell relaxation obeys asymptotically the linearized
Langevin equation (1)
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FIG. 5. (Color online) Autocorrelation effects induced by delay:
PSD (main panel) and ACF (inset) of x(z) for e=1 and 7,=30 prior
to (black) and after filtering (red). Other simulation parameters are
as in Fig. 1.

x=—,u,x+§1(t), (5)

where u=2/Ty(D,,) and él(t)=(wi/,u,)”2§(t). The ensuing
stationary autocorrelation function (ACF) of the process,
(x()x(0))=[1+(€/2)e ] C..(t) +(e/2) C..(t—7,), with C. (1)
=(2D/ wi)e‘“l", corresponds to the relaxation time

T,(7) = (1 + e 2T CP)T,(2D), (6)

also plotted in Fig. 4(a) (dashed curves). In conclusion, the
resonant behavior of 7,(7;) is due to the competition of in-
trawell and interwell dynamics.

The resonant curves P;(7,) in Fig. 4(b) have a much sim-
pler explanation. Synchronization by noise recycling oper-
ates by locking the process to trajectories that happen to
complete n full renewal cycles within the delay time 7, Of
course, the higher the density of such trajectories, the stron-
ger the synchronization effect; for instance, for n=1,
Pl(Td)OC]V(rl)(Td). Moreover, we already know that the Nﬁ")
background is an Erlang function of order 2n—1 with maxi-
mum at (2n—-1)T,(7,); hence, the optimal synchronization
condition Tfip)zTe(rilP)) for n=1. This equation, solved
graphically in Fig. 4(a), as the intersection point of our nu-
merical data sets with the line 7,=7, closely locates the
position TZP) of the P maxima in Fig. 4(b). Finally, for large
74, all trajectories with T(rn)z 7,2T,(7;)/4 do contribute to
the primary Nf") peaks in Fig. 3(b), so that for n=1,
P 1(7';}))) = %Te(sz))Ngl)(T(dP)). The details of this quantitative
analysis will be reported elsewhere; what matters here is that
a substantial fraction of the renewal cycles, over 15% in Fig.
4(b), gets indeed synchronized by noise recycling.

IV. CONCLUDING REMARKS

In conclusion, we have proved that noise recycling influ-
ences the activation process in a bistable system by locking
renewal trajectories at all orders. The ensuing mechanism of
resonant stochastic synchronization is reminiscent of sto-
chastic resonance [15,20], with the recycle delay time replac-
ing the external drive period.
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Extended apparatuses, like the VIRGO gravitational wave
detector, working at their sensitivity threshold, can become
extremely sensitive to synchronization effects. For instance,
numerical simulation shows that the recycling of an additive
noise induces regular oscillations in the power spectral den-
sity (PSD) of the output signal x(r), no matter what its dy-
namics.

An example of PSD (defined as the Fourier transform of
the stationary ACF) for the process (1) and (2), is displayed
in Fig. 5. For correlation times of the order of the delay 7,
the stationary ACF (x(7)x(0)) develops a bump (see inset),

which corresponds to an oscillatory behavior of the PSD
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Such a behavior has already been observed for an over-
damped oscillator driven by recycled noise [13]; therefore, to
get rid of the details of the intrawell dynamics, we fed x(z)
through a two-state filter with thresholds +x,,. After filtering,
damped spectral oscillations spaced by 7';11 are still observ-
able, thus proving that 7, actually modulates the frequency of
the escape events. For the typical VIRGO feedback control
times [3], spurious spikes in the output PSD are to be ex-
pected. To avoid false detection signals at the antenna oper-
ating frequencies, a revision of the filtering procedures might
be needed.
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